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New efficient and accurate numerical methods are proposed to compute ground states and
dynamics of dipolar Bose-Einstein condensates (BECs) described by a three-dimensional
(3D) Gross-Pitaevskii equation (GPE) with a dipolar interaction potential. Due to the high
singularity in the dipolar interaction potential, it brings significant difficulties in mathe-
matical analysis and numerical simulations of dipolar BECs. In this paper, by decoupling
the two-body dipolar interaction potential into short-range (or local) and long-range inter-
actions (or repulsive and attractive interactions), the GPE for dipolar BECs is reformulated
as a Gross-Pitaevskii-Poisson type system. Based on this new mathematical formulation,
we prove rigorously existence and uniqueness as well as nonexistence of the ground states,
and discuss the existence of global weak solution and finite time blow-up of the dynamics
in different parameter regimes of dipolar BECs. In addition, a backward Euler sine pseudo-
spectral method is presented for computing the ground states and a time-splitting sine
pseudospectral method is proposed for computing the dynamics of dipolar BECs. Due to
the adoption of new mathematical formulation, our new numerical methods avoid evalu-
ating integrals with high singularity and thus they are more efficient and accurate than
those numerical methods currently used in the literatures for solving the problem. Exten-
sive numerical examples in 3D are reported to demonstrate the efficiency and accuracy of
our new numerical methods for computing the ground states and dynamics of dipolar
BECs.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Since 1995, the Bose-Einstein condensation (BEC) of ultracold atomic and molecular gases has attracted considerable
interests both theoretically and experimentally. These trapped quantum gases are very dilute and most of their properties
are governed by the interactions between particles in the condensate [31]. In the last several years, there has been a quest for
realizing a novel kind of quantum gases with the dipolar interaction, acting between particles having a permanent magnetic
or electric dipole moment. A major breakthrough has been very recently performed at Stuttgart University, where a BEC of
52Cr atoms has been realized in experiment and it allows the experimental investigations of the unique properties of dipolar
quantum gases [22]. In addition, recent experimental developments on cooling and trapping of molecules [17], on photoas-
sociation [43], and on Feshbach resonances of binary mixtures open much more exciting perspectives towards a degenerate
quantum gas of polar molecules [35]. These success of experiments have spurred great excitement in the atomic physics
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community and renewed interests in studying the ground states [36,48,20,21,23,34] and dynamics [25,30,32,50] of dipolar
BECs.

At temperature T much smaller than the critical temperature T, a dipolar BEC is well described by the macroscopic wave
function v = Y(x,t) whose evolution is governed by the three-dimensional (3D) Gross-Pitaevskii equation (GPE) [48,36]

2
ihow (X, t) = 72”1_sz + V(X) + Uoly* + (Vdip * ¢|2)} W, XeR3 t>0, (1.1)

where t is time, X = (x,y,z)" € R’ is the Cartesian coordinates, h is the Planck constant, m is the mass of a dipolar particle and
V(x) is an external trapping potential. When a harmonic trap potential is considered, V( ) =2 (w2x* + wzy + w?z?) with wy,
wy and w, being the trap frequencies in x-, y- and z-directions, respectively. Uy = 4”“ AT ds descrlbes local (or short-range) inter-
action between dipoles in the condensate with a; the s-wave scattering length (posmve for repulsive interaction and nega-
tive for attractive interaction). The long-range dipolar interaction potential between two dipoles is given by

Holip 1= 3(x-)*/|X]* _ HolGp 1 — 3 cos?(0)

R? 1.2
4T |x|3 47 \x\3 ’ Xer, (12)

Vaip(X) =

where pi is the vacuum magnetic permeability, 4, is permanent magnetic dipole moment (e.g. i, = 645 for 52C, with pi
being the Bohr magneton), n = (ny,n,,n3)" € R® is the dipole axis (or dipole moment) which is a given unit vector, i.e.
n| =4/n? +n3 +n3 =1, and 0 is the angle between the dipole axis n and the vector x. The wave function is normalized
according to

1P = [ e 0P dx=N. (13)
where N is the total number of dipolar particles in the dipolar BEC.
By introducing the dimensionless variables, t — -t w1th wo = Min{wy, ®y, W}, X — AoX with ag = mmo = 3 "/ we obtain
the dimensionless GPE in 3D from (1.1) as [48,49, 31 5]
00 (x.1) = [—jvz + V) + Bl + i Uap W)} V. XER, t>0, (1.4)
where = ZI,UZ3 =4l )= mNﬂw““’ V(X) =3 (7ix* + y;y* +7%z%) is the dimensionless harmonic trapping potential with

(&) 0 H 1 1 1 1 1 1
V=05 Yy = ‘z and y, = 2%, and the dimensionless long-range dipolar interaction potential Ugip(X) is given as

3 1-3x-n)*/|x” 3 1-3cos*()

R3. 1.5
47 |x|3 4T |x|3 xe (1.5)

Udlp ( )

From now on, we will treat g and 1 as two dimensionless real parameters. We understand that it may not physically
meaningful when / <0 for modeling dipolar BEC. However, it is an interesting problem to consider the case when 4 <0 at
least in mathematics and it may make sense for modeling other physical system. In fact, the above nondimensionlization
is obtained by adopting a unit system where the units for length, time and energy are given by ag, 1/wg and hwy, respectively.
Two important invariants of (1.4) are the mass (or normalization) of the wave function

N 0) = 01 = [ W OF de= [ o) dx=1, >0, (16)
R JR
and the energy per particle

Bt = [ [V VOOt + 5101+ (Uag )7

dx =E(y(,0)), t>0. (1.7)

To find the stationary states including ground and excited states of a dipolar BEC, we take the ansatz
P =eMpx), XeR, >0, (1.8)

where p € R is the chemical potential and ¢ := ¢(x) is a time-independent function. Plugging (1.8) into (1.4), we get the
time-independent GPE (or a nonlinear eigenvalue problem)

P00 = [~ 74 V0 + B +7(Uap 07| 600, xe B, (19)

under the constraint
Il = /R lp(x)|” dx = 1. (1.10)

The ground state of a dipolar BEC is usually defined as the minimizer of the following nonconvex minimization problem:
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Find ¢ € S and u# € R such that
B =E(gg) =min E(@), 4 := uy), (1.11)
where the nonconvex set S is defined as
S:={gllgl* = 1. E(¢) < < | (112)

and the chemical potential (or eigenvalue of (1.9)) is defined as

1
p(@) = [ 31V VOQIoF + 101"+ 2(Ua ) 7

ax=E@)+5 [ [0l + (Vs 9P) 67]dx.  (1.13)

In fact, the nonlinear eigenvalue problem (1.9) under the constraint (1.10) can be viewed as the Euler-Lagrangian equa-
tion of the nonconvex minimization problem (1.11). Any eigenfunction of the nonlinear eigenvalue problem (1.9) under the
constraint (1.10) whose energy is larger than that of the ground state is usually called as an excited state in the physics
literatures.

The theoretical study of dipolar BECs including ground states and dynamics as well as quantized vortices has been carried
out in recent years based on the GPE (1.1). For the study in physics, we refer to [16,18,24,33,1,19,24,27,28,44,45,47,49,52]
and references therein. For the study in mathematics, existence and uniqueness as well as the possible blow-up of solutions
were studied in [12], and existence of solitary waves was proven in [2]. In most of the numerical methods used in the lit-
eratures for theoretically and/or numerically studying the ground states and dynamics of dipolar BECs, the way to deal with
the convolution in (1.4) is usually to use the Fourier transform [25,20,34,46,10,41,51]. However, due to the high singularity in
the dipolar interaction potential (1.5), there are two drawbacks in these numerical methods: (i) the Fourier transforms of the
dipolar interaction potential (1.5) and the density function |/|* are usually carried out in the continuous level on the whole
space R (see (2.3) for details) and in the discrete level on a bounded computational domain €2, respectively, and due to this
mismatch, there is a locking phenomena in practical computation as observed in [34]; (ii) the second term in the Fourier
transform of the dipolar interaction potential is 3-type for 0-mode, i.e. when ¢ = 0 (see (2.3) for details), and it is artificially
omitted when ¢ =0 in practical computation [34,21,29,50,49,46,10] thus this may cause some numerical problems too. The
main aim of this paper is to propose new numerical methods for computing ground states and dynamics of dipolar BECs
which can avoid the above two drawbacks and thus they are more accurate than those currently used in the literatures.
The key step is to decouple the dipolar interaction potential into a short-range and a long-range interaction (see (2.5) for
details) and thus we can reformulate the GPE (1.4) into a Gross-Pitaevskii-Poisson type system. In addition, based on the
new mathematical formulation, we can prove existence and uniqueness as well as nonexistence of the ground states and
discuss mathematically the dynamical properties of dipolar BECs in different parameter regimes.

The paper is organized as follows. In Section 2, we reformulate the GPE for a dipolar BEC into a Gross—Pitaevskii—Poisson
type system and study analytically the ground states and dynamics of dipolar BECs. In Section 3, a backward Euler sine
pseudospectral method is proposed for computing ground states of dipolar BECs; and in Section 4, a time-splitting sine
pseudospectral (TSSP) method is presented for computing the dynamics. Extensive numerical results are reported in Sec-
tion 5 to demonstrate the efficiency and accuracy of our new numerical methods. Finally, some conclusions are drawn in
Section 6. Throughout this paper, we adopt the standard Sobolev spaces and their corresponding norms.

2. Analytical results for ground states and dynamics

Let r = |x| = v/x2 + ¥2 + z% and denote

On =NV =n10x + N0y + 130;, Onn = On(On). (2.1)
Using the equality (see [28,30] and a mathematical proof in the Appendix A)
3 3x-m)?\ 1 3
Udip(X) = ans (1 —— )= —0(X) — 30nn <m> XeR’, (2.2)

with §(x) being the Dirac distribution function, it is straightforward to get the Fourier transform of Ugip(X) as

— 3(n-¢)?

(Uaip) (&) = -1+ P (el (23)
Introducing a new function
— L . 2 _ l # / 2 / 3
o0 = (g ) W08 =g [ o VKO XL xRtz 0, 24)

we obtain
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Uap = WO = WX OF 30,0, Xe R, 030, 25)
with
P(%.) = On(p00,0) = Oan (g )| #1008 = () * [omlit 0] 26)

In fact, the above equality decouples the dipolar interaction potential into a short-range and a long-range interaction which
correspond to the first and second terms in the right hand side of (2.5), respectively. Plugging (2.5) into (1.4) and noticing
(2.4) and (2.6), we can reformulate the GPE (1.4) into a Gross-Pitaevskii-Poisson type system.

i0ah(x, t) = {—%vz SV + (f— D OF = 320x,0) |y(x.t), XeR®, t>0, (2.7)

(;b(xv t) = 0111190()(7 t)7 —VZQD(X, t) = |l//(x7 t)‘zv ‘)l“lirolo (,D(X, t) =0. (28)
Note that the far-field condition in (2.8) makes the Poisson equation uniquely solvable. Using (2.8) and integration by parts,
we can reformulate the energy functional E(-) in (1.7) as

3

1 1
E(y) = / 3 {awf+V(x>|w2+§<ﬁ4>|w“+7|anv<o\2 dx, (2.9)

where ¢ is defined through (2.8). This immediately shows that the decoupled short-range and long-range interactions of the
dipolar interaction potential are attractive and repulsive, respectively, when 1 > 0; and are repulsive and attractive, respec-
tively, when 1 < 0. Similarly, the nonlinear eigenvalue problem (1.9) can be reformulated as

HO) = |5 ¥+ V0 + (= D4 = 3200 [ o) 210)
PX) = Imnp(X), ~V2(X) = [$X)], xR, lim p(x)=0. (2.11)

[X| =00

2.1. Existence and uniqueness for ground states
Under the new formulation for the energy functional E(-) in (2.9), we have.
Lemma 2.1. For the energy E(-) in (2.9), we have

(i) For any ¢ € S, denote p(x) = |¢(X)|? for x € R®, then we have
E(¢) = E(|¢]) =E(vp), V€S, (2.12)

so the minimizer ¢g of (1.11) is of the form e |¢,| for some constant 6, € R.
(ii) When B > 0 and —1B < 2 < B, the energy E(,/p) is strictly convex in p.

Proof. For any ¢ €S, denote p = |¢|? and consider the Poisson equation

V2p(X) = —|p(X)]* := —p(X), Xe R, lim ¢(x) =0. (2.13)

|X| =00
Noticing (2.1) with |n| = 1, we have the estimate

10aV@ll, < ID*ll, = [V*@l, = lIpll = 4l5,  with D*=VV. (2.14)

(i) Write ¢(x) = e/%®)|p(x)|, noticing (2.9) with s = ¢ and (2.13), we get

1 1 1 , 32
E(¢) = / ; {iwwuz+§|¢\2|v0<x>|2+V<x>\¢|2+§<ﬂ—ﬁ>|¢|“+7|anv@|2 dx

1 1 .
> /w {i\vld)\lz+V(X)|¢IZ+§(ﬁfi)|¢\“+32—;|a.,vm|2 dx =E(|¢)) = E(Vp), VoS, (2.15)

and the equality holds iff VO(x) =0 for x € R?, which means 0(x) = 0, is a constant.
(ii) From (2.9) with i = ¢ and noticing (2.13), we can split the energy E(,/p) into two parts, i.e.

E(vp) = E1(vp) + E2(V/P), (2.16)
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where

E VAR + Vx)p

Ei(Vp) = /[R 3 dx, (2.17)
Ep) - |

n, 3,
[ 3~ 2102 + S lowvor

(2.18)

As shown in [26], E;(y/p) is convex (strictly) in p. Thus we only need prove E,(,/p) is convex too. In order to do so, consider
VP71 €S, \/P; €85, and let ¢, and ¢, be the solutions of the Poisson Eq. (2.13) with p = p; and p = p,, respectively. For any

o €[0,1], we have /ap, + (1 —a)p, €S, and
oBo(VP7) + (1 = DE(VF7) ~ Ba(fapy + (1= 0p, ) = (1 -0 [

JRr3

20 Dlps = 0o + 5 a1 - 03)F|
(2.19)

which immediately implies that E;(,/p) is convex if > 0and 0<A<B. If >0 and —18 < 4 <0, noticing that o, +
(1 — o), is the solution of the Poisson Eq. (2.13) with p = ap; + (1 — a)p,, combining (2.14) with ¢ = ¢, — ¢, and (2.19),
we obtain E,(,/p) is convex again. Combining all the results above together, the conclusion follows. [

Now, we are able to prove the existence and uniqueness as well as nonexistence results for the ground state of a dipolar
BEC in different parameter regimes.

Theorem 2.1. Assume V(x) > 0 for X € R® and limy - V(X) = oo (i.e., confining potential), then we have:
(i) If B =0 and —1B < A < B, there exists a ground state ¢, < S, and the positive ground state |¢g| is unique. Moreover,
$g = || for some constant 6y € R.
(ii) If <0, 0r B = 0 and /. < —3p or 4> B, there exists no ground state, i.e., i(/ngE(qb) = —o0.
peE
Proof.
(i) Assume $ > 0 and —1 8 < 2 < B, we first show E(¢) is nonnegative in §, i.e.

)= [ [3IVOF +VO0P +5(8 - iol* + 5 lonVef dx> 0. voes (220)
JR

In fact, when g > 0 and 0 < 4 < B, noticing (2.9) with s = ¢, it is obvious that (2.20) is valid. When g > 0 and -1 <1 <0,
combining (2.9) with y = ¢, (2.13) and (2.14) we obtain (2.20) again as

E) > [ 51907+ VOOloP +5 (5= nlol* + 5 o] d

"1 1
x= [ 31V veolef + 5+ 20001

> 0. (2.21)
Now, let {¢"},”, C S be a minimizing sequence of the minimization problem (1.11). Then there exists a constant C such that
IVe"ll, <C "4 <G, /3 VX)¢"®)Pdx<C,  n>0. (2.22)
R
Therefore ¢" belongs to a weakly compact set inL% H' = {¢|l|¢ll2 + | V|2 < 00}, and L}, = {¢> | ng (X)* dx < oo} with a

weighted L?-norm given by [|$|ly = [fs |p(X)]*V (x )dx]”2 Thus, there exists a ¢ e H' (L2 N L* and a subsequence (which
we denote as the original sequence for simplicity), such that

¢ —¢>, inl*nl*nl2, V¢" — Vé™, in 2. (2.23)

Also, we can suppose that ¢" is nonnegative, since we can replace them with |¢"|, which also minimize the functional E. Sim-
ilar as in [26], we can obtain [|¢>|| = 1 due to the confining property of the potential V(X). So, ¢*° € S. Moreover, the L>-norm
convergence of ¢" and weak convergence in (2.23) would imply the strong convergence ¢" — $> € L. Thus, employing Hol-
der inequality and Sobolev inequality, we obtain

18" = @)l < Cullg" = 6137 (19" 157 + 167187) < C(IV9" 157 + IV~ 137) 9" = 9™, =0, n—cx,
(2.24)

which shows p" = (¢")? - p>= (¢>)* € [2 Since E»(,/p) in (2.18) is convex and lower semi-continuous in p, thus E;(¢>) <
lim,,_, . Ex(¢"). For E; in (2.17), Eq(¢™) < lim,_,..E1(¢") because of the lower semi-continuity of the H'- and L3-norm. Com-
bining the results together, we know E(¢*>) < lim,,_, . .E(¢"), which proves that ¢ is indeed a minimizer of the minimization
problem (1.11). The uniqueness follows from the strictly convexity of E(,/p) as shown in Lemma 2.1.

(ii) Assume f<0,or g > 0and A < —1Bor /> p. Without loss of generality, we assume n = (0,0,1 )T and choose the function
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1 1 X2 +y? 2 3
¢£1.£2 (X) - (27'[81)]/2 : (27'[82)1/4 exp (7 28] ) exp (7 E)v XeR, (225)

with &; and ¢, two small positive parameters (in fact, for general n € R® satisfying [n| = 1, we can always choose 0 # n; € R?
and 0 # n, € R? such that {n;,n,,n} forms an orthonormal basis of R*> and do the change of variables x = (x,y,z)" to y =

(x-ny,Xx-ny,x-n)" on the right hand side of (2.9), the following computation is still valid). Taking the standard Fourier trans-
form at both sides of the Poisson equation

V20,00 = [y, (OF = py,, (0. XER lim g, (6) =0, (2:26)
we get

P @r 0, (8) = Py, (), E€R. D (2.27)

Using the Plancherel formula and changing of variables, we obtain
2 1 o 2 1 &P — P
10090, = sl 000, (= s [ 2 | o e
= 31 ) ukvi'z ; S|P de, &g >0. (2.28)
em’eve Jo (6l +1aP) -2+ 6P
By the dominated convergence theorem with fixed &;./¢;, we get
82/81 — +00,

(2.29)

2 0,
”aﬂv{psl,ngZ - 1

— 2 2 4
2nPe Ve f[R3 |p1,1 (Q) dé = ||Psl,.gz\|z = ||¢£1.£2H47 82/81 -0

When fixed ¢&;+/&;, the last integral in (2.28) is continuous in &,/¢; > 0. Thus, for any o € (0,1), by adjusting &,/e1: = C, > 0, we
could have Ha,,Vq)S]'SzHﬁ = ocH¢6],82||j. Substituting (2.25) into (2.17) and (2.18) with /p = ¢,, ., under fixed &,/¢;, > 0, we get

1 G  C
Ei(f) = [ [iwwgl.gz\z F V), o, [ dx =L+ 22+ 0(1), (230)
1 —A+30.  C
Ex(¢: ) =5 /Rg(ﬁ—i+3a).))|¢g"gz|4dx:ﬁf~ﬁ, (231)

with some constants C;,C5,C3 >0 independent of & and &,. Thus, if f<0, choose a=1/3; if § > 0 and 4 < —1p, choose
1/3-£<au<1; and if >0 and i>p, choose O<a<i(1-£); as &, &—0", we can get EpnﬁE(d;) =
N - €.

lim,, ,, o E1(dg, s,) + E2(ds, 5,) = —oo, which implies that there exists no ground state of the minimization problem (1.11). O
By splitting the total energy E(-) in (2.9) into kinetic, potential, interaction and dipolar energies, i.e.

E(¢) = Exin(®) + Epot(¢) + Eint(¢) + Eqaip(9), (2.32)

where
Bun(d) =5 [ V000F %, Eni(d) = [ VOOIS007dR. En() = [ 16001%dx
Eanld) =5 [ (Vap 07 i000Pax =5 [ 10007 [-1900F - 30me]dx
= % /w [—Id)(X)I4 + 3(V2¢>)(8.mq0)]dx = % /w [—|¢(x)|4 + 3|6,,V<p|2}dx, (2.33)
with ¢ defined in (2.11), we have the following Viral identity:

Proposition 2.2. Suppose ¢, is a stationary state of a dipolar BEG, i.e. an eigenfunction of the nonlinear eigenvalue problem (1.9)
under the constraint (1.10), then we have

2Exin (‘be) - 2Etrap (Qbe) + 3Ein (d)e) + 3Edip ((/)e) =0. (234)
Proof. Follow the analogous proof for a BEC without dipolar interaction [31] and we omit the details here for brevity. O

2.2. Analytical results for dynamics

The well-posedness of the Cauchy problem of (1.1) was discussed in [12] by analyzing the convolution kernel Ugip(X) with
detailed Fourier transform. Under the new formulation (2.7) and (2.8), here we present a simpler proof for the well-posed-
ness and show finite time blow-up for the Cauchy problem of a dipolar BEC in different parameter regimes. Denote
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X = {u e H' @) Il = ol + s + [ VoomOOP dx < o .

Theorem 2.3. (Well-posedness) Suppose the real-valued trap potential V(x) € C*(R>) such that V(x) = 0 for x e R® and
D*V(x) € L™ (R?) for all o € N3 with || > 2. For any initial data y(X,t = 0) = yro(X) € X, there exists Tyax € (0, + co] such that the
problem (2.7) and (2.8) has a unique maximal solution yy € ([0, Tmax),X). It is maximal in the sense that if Tmax < oo, then
lW(-t)|x > oo when t — Tr,,,. Moreover, the mass N({(-,t)) and energy E(y(-t)) defined in (1.6) and (1.7), respectively, are
conserved for t € [0, Tmax). Specifically, if > 0 and —1 B < 2 < B, the solution to (2.7) and (2.8) is global in time, i.e., Tyax = co.

Proof. For any ¢ € X, let ¢ be the solution of the Poisson Eq. (2.13), denote p = |¢|? and define
6G(.9)
o
where f denotes the conjugate of f. Noticing (2.14), it is easy to show that G(¢) € C' (X, R), g(¢) € (X, LP) for some p € (6/5,2],

and

G(6.3) = Glp) =5 [ 00 omomdx.  &(9) ="~ g o, 235)

lgw) —g@)lly < C(ullx + [2llx)[[u = 2|lr,  for some re[2,6),  Vu,veX. (236

Applying the standard Theorems 9.2.1, 4.12.1 and 5.7.1 in [13,40] for the well-posedness of the nonlinear Schrédinger
equation, we can obtain the results immediately. O

Theorem 2.4. (Finite time blow-up) Let <0, or f > 0 and . < —1 g or 2> B, and assume V(x) satisfies 3V(x) +x-VV(x) > 0 for
X € R3. Given any initial data y(X,t = 0) = Yo(X) € X for the problem (2.7) and (2.8), there exists finite time blow-up, i.e., Tyax < o,
if one of the following holds:

E(0) < 0; B
(i) E(y0) =0 and Im (fs o (X) (X~ V(X)) d )
(iii) E(0) >0 and Im (fis o(X) (X V(X)) d. \/35 o) lIXvoll 23
Table 1
Comparison for evaluating dipolar energy under different mesh sizes h.
Case | Case Il Case III
DST DFT DST DFT DST DFT
M=32&h=1 2.756E-2 2.756E-2 3.555E-18 1.279E-4 0.1018 0.1020
M=64&h=0.5 1.629E-3 1.614E-3 9.154E-18 1.278E-4 9.788E-5 2.269E—-4
M=128 & h=0.25 1.243E-7 1.588E-5 7.454E-17 1.278E-4 6.406E—7 1.284E—-4

Table 2

Different quantities of the ground states of a dipolar BEC for g =0.20716N and Z = 0.033146N with different number of particles N.
% E¢ e Eim Egot E‘lgnt Eﬁlp ¥ % pg(o)
0.1 1.567 1.813 0477 0.844 0.262 -0.015 0.796 1.299 0.06139
0.5 2.225 2.837 0.349 1.264 0.659 —0.047 0.940 1.745 0.02675
1 2.728 3.583 0.296 1.577 0.925 -0.070 1.035 2.009 0.01779
5 4.745 6.488 0.195 2.806 1.894 —-0.151 1.354 2.790 0.00673
10 6.147 8.479 0.161 3.654 2.536 -0.204 1.538 3.212 0.00442
50 11.47 15.98 0.101 6.853 4.909 -0.398 2.095 4.441 0.00168
100 15.07 21.04 0.082 9.017 6.498 -0.526 2.400 5.103 0.00111

Table 3

Different quantities of the ground states of a dipolar BEC with different values of - with f=207.16.
% E® ’ug Eim Eﬁﬂt Ezgnt Eédzxp Oé O-§ Pg(o)
-0.5 2.957 3.927 0.265 1.721 0.839 0.131 1.153 1.770 0.01575
-0.25 2.883 3.817 0.274 1.675 0.853 0.081 1.111 1.879 0.01605
0 2.794 3.684 0.286 1.618 0.890 0.000 1.066 1.962 0.01693
0.25 2.689 3.525 0.303 1.550 0.950 -0.114 1.017 2.030 0.01842
0.5 2.563 3.332 0.327 1.468 1.047 -0.278 0.960 2.089 0.02087
0.75 2.406 3.084 0.364 1.363 1.212 -0.534 0.889 2.141 0.02536

1.0 2.193 2.726 0.443 1.217 1.575 —1.041 0.786 2.189 0.03630
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where Im (f) denotes the imaginary part of f.

Proof. Define the variance

av(t) = oy (Y (- 1) = / IXP OO dX = 6,(8) +6,(0) + 3(),  £>0, (2.37)

where

Ga(t) = Go (Y1) = / 2P OPdx a=x .z (238)

For o =x, or y or z, differentiating (2.38) with respect to t, noticing (2.7) and (2.8), integrating by parts, we get

5
0.02 |
0.015 =
0
0.014
0.005
-5.
0l 5
5
0
z 0 Y

5 -5

-5y

Fig. 1. Surface plots of |¢(x,0,2)|* (left column) and isosurface plots of |¢4(x,y,z)| = 0.01 (right column) for the ground state of a dipolar BEC with
B =401.432 and /= 0.16p for harmonic potential (top row), double-well potential (middle row) and optical lattice potential (bottom row).
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%O-a(t) =i /3 [oa/_/(xf t)aal//(x7 t) - “‘/’(X, t)aal/_/(x7 t)} dX, t>0. (239)

Similarly, we have

d _ 2 4 2 2
00 = / (21008 + (8= D" + 64y P 20,0m — 2?0,V (%)) dx. (2.40)

Noticing (2.8) and

_ / V20X Vo) dX = = / PR
®3 2 Jw

summing (2.40) for « = x, y and z, using (2.37) and (1.7), we get

Fig. 2. Isosurface plots of the ground state |¢¢(x)| = 0.08 of a dipolar BEC with the harmonic potential V(x) =1 (x2 + y* +z%) and § = 207.16 for different
values of %: (a) 4 = —0.5; (b) = 0; (c) = 0.25; (d) ;= 0.5; (€) 5= 0.75; () ;= 1.
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d* 2,3 4,9, 2 2
—=0v(t) = 2/ IVYI"+5 (B = W™ + 540 VYI™ = WI"(x- VV(X)) | dx
dt r3

=6E(y) —/ IV (x, ) — 2/ (X, (3V(X) +X - VV(X)) dx < 6E() = 6E(}y), £ > 0. (2.41)

R3 R3
Thus,
ov(t) < 3E(o)t: + 0, (0)t + ay(0), t >0,

and the conclusion follows in the same manner as those in [40,13] for the standard nonlinear Schrédinger equation. [
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Fig. 3. Time evolution of different quantities and isosurface plots of the density function p(x,t): = [/(x,t)|? = 0.01 at different times for a dipolar BEC when
the dipolar direction is suddenly changed from n= (0,0,1)" to (1,0,0)" at time t = 0.
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3. A numerical method for computing ground states

Based on the new mathematical formulation for the energy in (2.9), we will present an efficient and accurate backward
Euler sine pseudospectral method for computing the ground states of a dipolar BEC.

In practice, the whole space problem is usually truncated into a bounded computational domain Q = [a,b] x [c,d] x [e,f]
with homogeneous Dirichlet boundary condition. Various numerical methods have been proposed in the literatures for com-
puting the ground states of BEC (see [37,15,4,3,7,14,11] and references therein). One of the popular and efficient techniques
for dealing with the constraint (1.10) is through the following construction [4,8,3]: Choose a time step At > 0 and set t, = n At
forn=0,1,... Applying the steepest decent method to the energy functional E(¢) in (2.9) without the constraint (1.10), and

12 8
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L E 7E AN T ~
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6( 3t
4 B[S, o g,
1 p———l
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Fig. 4. Time evolution of different quantities and isosurface plots of the density function p(x,t): = [/(x,t)|? = 0.01 at different times for a dipolar BEC when
the trap potential is suddenly changed from from } (x* + y? + 252%) to } (x* + y? + £ z?) at time t=0.
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then projecting the solution back to the unit sphere S at the end of each time interval [t,,t,.+1] in order to satisfy the con-
straint (1.10). This procedure leads to the function ¢(x,t) is the solution of the following gradient flow with discrete

normalization:

1 -
dep(X,t) = QVZ —V(X) = (8= DX OF +320(X,t) | $(X,1), 3.1
P t) = (X, ),  —V2O(X ) = [pX, D), X€Q ta <<y, 3.2)
30 .
- - E_(
25¢ CE ] - -k
pot e 10AR)
— E ) 251 o (t -
20¢ — E, (1 1 e G0 o
P — ot .
|
151 I 2 !
|

o 2z
-2 -4 2y =2 -4 -2 Y

Fig. 5. Time evolution of different quantities and isosurface plots of the density function p(x,t): = [/(x,t)|? = 0.01 at different times for a dipolar BEC when
the dipolar interaction constant is suddenly changed from /. =0.8 f=82.864 to A=4 ff=414.32 at time t=0.
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s b
DX, trr) = DX Ey) = % X0 n>0, (3.3)
¢(x7 t)|xe{)!) = (P(X7 t)'xa‘m = 07 t> 07 (34)
$(X,0) = do(X), with [|¢oll = 1; (3.5)

where ¢(x, t;) = lim,_: ¢ (X, ).
Let M, K and L be even positive integers and define the index sets

0.04 0.08 t 0.12 0.16 02 0 0.04 0.08 { 0.12 0.16 0.2

-1

z

Fig. 6. Time evolution of different quantities and isosurface plots of the density function p(x,t): = [/(x,t)|? = 0.01 at different times for a dipolar BEC when
the interaction constant f is suddenly changed from = 103.58 to = —569.69 at time t = 0.
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TMKLf{(jkl)uzlz M-1,k=1,2,...K-1,1=1,2,...,L -1},
T = {(]kl)ufo,l7 M, k=0,1,....K, [=0,1,.. ,L}.
Choose the spatial mesh sizes as h, = ” 4 hy, = % and h, :f%e and define
X:=a+jh, y.=c+kh, z=e+lh, (ke Ty
Denote the space
Yuie = span{®ju(X), G, k1) € Tux},

with

Bja(x) = sin (5 (x— @)) sin((y - ) sin(fz—€)), x€Q (kD € Tua,

j nk 7l .
'u;(:m’ H%:m7 Mf:ma (k1) € T
and Pyr:Y = {¢ € C(2)|p(X)|xco2 = 0} > Yuiy be the standard project operator [38], i.e.
M-1 K-1 L-1
(Puic2)(X) = Upgs Qpgs(X), X € Q, YveY,
p=1 g=1 s=1
with
Upgs :/ V(X) Dpgs(X) dX, (P.9.5) € T (3.6)
Q

Then a backward Euler sine spectral discretization for (3.1)-(3.5) reads:
Find ¢”+1(X) € Yk (le d)+(x) S YMKL) and QD”(X) <€ Yk such that

OO 2920 ) Pua{ [VOR) 1 (8- 210" 0 +320"(0)] ' 0}, x € @ 3.7)
700 = O V20" 00) =P (0°00F). 600 = L2 om0 (38)

where ¢9(X) = Pyia(po(X)) is given.

The above discretization can be solved in phase space and it is not suitable in practice due to the difficulty of computing
the integrals in (3.6). We now present an efficient implementation by choosing ¢°(x) as the interpolation of ¢g(X) on the grid
points {(X;,¥,21), (k1) € T}, i-e. ¢°X;Yi21) = po(X;,Yinz1) for (j,k, 1) € T, and approximating the integrals in (3.6) by a
quadrature rule on the grid points. Let ¢j, and @}, be the approx1mat10ns of ¢(X;, Yz, t,) and (p(x],yk.zl, tn), respectlvely,
which are the solution of (3.1)-(3.5); denote pj, = |f/)]k,| and choose ¢ﬂ<1 = ¢o(X;, Y1, 21) for (j,k,1) € Toy,. Forn=0, 1,
backward Euler sine pseudospectral discretization for (3.1)-(3.5) reads:

i — b 1 2 ,
=S (Vi) - [wxj,yk,zo + (8| + 3w"\,-kl} G U:k.D) € Tue, (39)
2 2 d)Jlrd
(P |jk[ = ( n P )l}kl 7(v5 (pn)|jkl = |d)]nkl| = pjnkb d)]r}:lr] = Hd’iHhv (310)
SIZI = nM+k} = ¢;"10+1] = jnl<+1] = ¢jn/$] = d’;ﬁl =0, (l k, l) € TMKLv (3.11)
Pou = Pt = Pior = Pia = Piko = Pji = 0, G, k1) € TMKL; (3.12)
where V? and &, are sine pseudospectral approximations of V2 and dpnp, respectively, defined as
M-1 K-1 L-1
2 n _ x\2 742 21 T ipTC kqm\ . ls_n
(936} =~ 2 2 2[00 0"+ 66") @ sin (1) sin (57 i (7).
=3 S Y O SP TY (3.13)
Pl = OnnDpgs (X k, ) € T ke, .
= e = T R U R 7
with (ﬁpqs ((p,q,s) € Tmre) the discrete sine transform coefficients of the vector ¢" as
— g M1kl ipm kqm Iswt
n _
(¢")pas = T 2. ; IZ¢J,<, sin ( Vi ) sin ( e > sin ( T ), (0,4.5) € T, (3.14)

and the discrete h-norm is defined as
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M-1 N-1 L-1

H¢+||i = hxhyhz |¢ﬁ<l|2-

j=1 k=1 1

—

Il
-

Similar as those in [6], the linear system (3.9)-(3.12) can be iteratively solved in phase space very efficiently via discrete
sine transform and we omitted the details here for brevity.

4. A time-splitting sine pseudospectral method for dynamics

Similarly, based on the new Gross-Pitaevskii-Poisson type system (2.7) and (2.8), we will present an efficient and accu-
rate time-splitting sine pseudospectral (TSSP) method for computing the dynamics of a dipolar BEC.

Again, in practice, the whole space problem is truncated into a bounded computational domain 2 = [a,b] x [c,d] x [e,f]
with homogeneous Dirichlet boundary condition. From time t = t,, to time t = t,,,1, the Gross-Pitaevskii-Poisson type system
(2.7) and (2.8) is solved in two steps. One solves first

0 (x,t) = 7%V2w(x, ), X€Q,  YXblgpo=0  tn<t<lyy, (4.15)
for the time step of length At, followed by solving

00 (x.t) = [V(X) + (8 — D (x, 02— 32(x,0)|y(x.1), (4.16)

PX,6) = Onp(X.1), VX=X XEQ tn << by (4.17)

P Olxcpo =0, (X Dleoo =0, o SE< L (4.18)

for the same time step. Eq. (4.15) will be discretized in space by sine pseudospectral method and integrated in time exactly
[9]. For t € [tp, ty+1], the equations (4.16)-(4.18) leave || and ¢ invariant in t [5,9] and therefore they collapses to

100X, t) = [VX) + (B = DX ta)]* = 320X, ta) | (X, 1), X € Q, ta << bran, (4.19)
(b(xa tn) = ann(/)(xv tn)v 7V2<D(x7 tﬂ) = ‘W(Xv tn)|27 X Q. (420)

Again, Eq. (4.20) will be discretized in space by sine pseudospectral method [9,38] and the linear ODE (4.19) can be inte-
grated in time exactly [5,9].

Let yj, and @}, be the approximations of W( xJ, ViZnt,) and q)(xJ, ViZi tn), respectively, which are the solution of (2.7) and
(2.8); and choose /¢ it = Wo(Xj, Vi, 21) for (j, k,1) € 79,,.Forn=0,1, ... asecond-order TSSP method for solving (2.7) and (2.8)
via the standard Strang splitting is [39,5,9]

-1 K-1 L-1 .
Ui = Z Z et P+ )4 () sin (JI;/I > sin (%) sin <lsTn>
p=1 g=1 s=1
DV 2_3,00 X
jkl =e - [V R (I/M‘ o l//;lzl)' (Jvkv l) € Tl?/IKU (421)
M-1 K-1 L-1 —
1 _ 12)?2]/4 jpm kqn . (Ism
jn’:lr > ; > e ity +(y?+1)° ( )pqr sin (M sin e sin I ;

where (w")pqs and (') s (P, q,5) € Twie) are the discrete sine transform coefficients of the vectors l//” and @, respectively
(defined similar as those in (3.14)); and @ ”\ s can be computed as in (3.13) with pf}, = p]k, = Jk,| for (j, k,1) € TSy

The above method is explicit, uncondltlonally stable, the memory cost is O(MKL) and the computational cost per time step
is O(MKL In (MKL)). In fact, for the stability, we have.

Lemma 4.1. The TSSP method (4.21) is normalization conservation, i.e.

" M-1 K-1 L-1 M-1 K-1 L-1 ,
1Y [l := hchyh, [Wal® = hehyh; Wl = 14°[5 n > 0. (4.22)

=1 k=1 =1 =1 k=1 =1

Proof. Follow the analogous proof in [5,9] and we omit the details here for brevity. O

5. Numerical results

In this section, we first compare our new methods and the standard method used in the literatures [49,46,41,10] to eval-
uate numerically the dipolar energy and then report ground states and dynamics of dipolar BECs by using our new numerical
methods.
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5.1. Comparison for evaluating the dipolar energy

Let

¢ = (X) = 73/4V1/2y1/467(,x(x +12)+7, zz) X € R3. (5.1)
Then the dipolar energy Egip(¢) in (2.33) can be evaluated analytically as [42]
14252 3k arctan (\/ xz—l)

ﬂ 2 e =1
. _ /“’))x\/’)TZ =
Edlp(ﬁb) - _47'5\/% ’ "= 1’ (5.2)
L2 1582 | (Vi K<1
=2 g 2y/1-k2 1-y/1-12 )’ '

with k = g% This provides a perfect example to test the efficiency of different numerical methods to deal with the dipolar
potential. Based on our new formulation (2.33), the dipolar energy can be evaluated via discrete sine transform (DST) as

Ah h h, M1 K1 L ~
Z [b (X5, Yir 21)| { |¢(X1»J’kazl)\2—3§0\jkl]v

=1 I=1

Edlp

where @l is computed as in (3.13) with pj; = |¢>(x]«,y,<,z,)|2 for (j, k,1) € T%,. In the literatures [49,41,46,10], this dipolar
energy is usually calculated via discrete Fourier transform (DFT) as

h h h M-1 K-1 L-1 o
Eaip(¢ ~ - Z Z Z (X, Y1, 21)] { kI ((Udip)(zﬂzazﬂﬁvzﬂi) : quS(\ﬁb\z))]«,

j=0 k=0 I=0
where F and F~! are the discrete Fourier and inverse Fourier transforms over the grid points {(x;,Vx,z), (,k, 1) € T
respectively [46]. We take /=24m, the bounded computational domain Q=[-16,16]>, M=K=L and thus
h = h, =h, = h, =32 Table 1 lists the errors e := |Egip(¢)) — Egip\ with Egip computed numerically via either (5.3) or (5.3) with
mesh size h for three cases:

e Case I. y,=0.25 and 7y, =1 which implies x = 2.0 and Eg;y(¢) = 0.0386708614;
e Case II. yx=7y,=1 which implies x = 1.0 and Edlp(qb) 0;
e Case II. 7, =2 and y,=1 which implies k = v/0.5 and Egip(¢) = —0.1386449741.

From Table 1 and our extensive numerical results not shown here for brevity, we can conclude that our new method via
discrete sine transform based on a new formulation is much more accurate than that of the standard method via discrete
Fourier transform in the literatures for evaluating the dipolar energy.

5.2. Ground states of dipolar BECs

By using our new numerical method (3.9)-(3.12), here we report the ground states of a dipolar BEC (e.g., >2Cr [30]) with
different parameters and trapping potentials. In our computation and results, we always use the dimensionless quantities.
We take M=K=L=128, time step At=0.01, dipolar direction n= (0,0,1)" and the bounded computational domain
Q=[-8,8] for all cases except Q=[-16,16]° for the cases fbz=1, 5, 10 and ©=[-20,20]® for the cases
o35 =50, 100 in Table 2. The ground state ¢, is reached numerically when o™t — ¢"|, =

- g._ i ial 18—
ocin. Br<1k<1< oelet \d)l, — il < &= =107%in (3.9)-(3.12). Table 2 shows the energy E® := E(¢g), chemical potential uf := u(y),

kinetic energy Ej := Eun(¢g), potential energy E%, :=Epx(dy), interaction energy E5 := Ein(d,), dipolar energy
Edlp = Eqip(¢,), condensate widths 0% := 0x(¢,) and 6% := O'Z(gbg) in (2.38) and central density pg(0) := |$¢(0,0,0)]* with har-
monic potential V(x,y,z) =1 (x* + y* + 0.25z) for different = 0.20716N and / = 0.033146N with N the total number of par-
ticles in the condensate; and Table 3 lists similar results with g=207.16 for different values of —0.5 < ﬁ < 1. In addition,
Fig. 1 depicts the ground state ¢4(x), e.g. surface plots of |¢4(x,0,2)|* and isosurface plots of |¢4(x)| = 0.01, of a dipolar BEC
with f=401432 and 1 =0.168 for harmonic potential V(x)=1(x>+y*>+2?), double-well potential
V(X) =12 +y*+27%) +4e /2 and optical lattice potential V(x) =1 (x> +y? +z2) + 100[sin® (Zx) + sin’ (Zy) + sin® (22)];
and Fig. 2 depicts the ground state ¢4(X), e.g. isosurface plots of |¢4(x)| = 0.08, of a dipolar BEC with the harmonic potential
V(x) = 3(x* +y*+2°) and f3 = 207.16 for different values of 0.5 <4< 1.

From Tables 2 and 3 and Figs. 1 and 2, we can draw the following conclusions: (i) For fixed trapping potential V(x) and
dipolar direction n =(0,0,1)", when $ and / increase with the ratio 2 % fixed, the energy E, chemical potential u, potential en-
ergy Epot, mteractlon energy E , condensate widths of and ¢ of the ground states increase; and resp., the kinetic energy E, ,
dipolar energy E dlp and central density p,(0) decrease (cf. Table 2). (ii) For fixed trapping potential V(x), dipolar direction
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n=(0,0,1)" and 8, when the ratio % increases from —0.5 to 1, the kinetic energy Ef, , interaction energy Ef , condensate
widths ¢% and central density p,(0) of the ground states increase; and resp., the energy E®, chemical potential u#, potential
energy E§, dipolar energy Eﬁip and condensate widths ¢% decrease (cf. Table 3). (iii) Our new numerical method can compute
the ground states accurately and efficiently (cf. Figs. 1 and 2).

5.3. Dynamics of dipolar BECs

Similarly, by using our new numerical method (4.21), here we report the dynamics of a dipolar BEC (e.g., >Cr [30]) under
different setups. Again, in our computation and results, we always use the dimensionless quantities. We take the bounded
computational domain Q=[-8,8]*> x [-4,4], M=K=L=128, i.e. h=h,=h,=1/8,h,=1/16, time step At=0.001. The initial
data (x,0) = Yro(x) is chosen as the ground state of a dipolar BEC computed numerically by our numerical method with
n= (0,0,1), V(x) =1(x? +y? +252%), f=103.58 and /= 0.8 = 82.864.

The first case to study numerically is the dynamics of suddenly changing the dipolar direction from n= (0,0,1)" to n=
(1,0,0)T at t = 0 and keeping all other quantities unchanged. Fig. 3 depicts time evolution of the energy E(t) := E({/(-,t)), chem-
ical potential u(t)= u(y(-t), kinetic energy Ein(t) := Ewin(Y/(-,t)), potential energy Epo(t) := Epoe(/(-,t)), interaction energy
Eine(t) := Eind(¥/(-,1)), dipolar energy Egip(t) := Eqip(¥/(-,t)), condensate widths o,(t) := o,({/(-, 1)), oAt) := o (- 1)), and central
density p(t) := |(0,t)[? as well as the isosurface of the density function p(x,t) := [/(x,t)* = 0.01 for different times. In addi-
tion, Fig. 4 show similar results for the case of suddenly changing the trapping potential from V(x) =1 (x* + y? + 25z?) to
V(x) =3 (x* +y* +22%) at t = 0, i.e. decreasing the trapping frequency in z-direction from 5 to 3, and keeping all other quan-
tities unchanged; Fig. 5 show the results for the case of suddenly changing the dipolar interaction from 1= 0.8 g = 82.864 to
A=4 p=414.32 at t = 0 while keeping all other quantities unchanged, i.e. collapse of a dipolar BEC; and Fig. 6 show the re-
sults for the case of suddenly changing the interaction constant 8 from g =103.58 to = —569.69 at t = 0 while keeping all
other quantities unchanged, i.e. another collapse of a dipolar BEC.

From Figs. 3-6, we can conclude that the dynamics of dipolar BEC can be very interesting and complicated. In fact, global
existence of the solution is observed in the first two cases (cf. Figs. 3 and 4) and finite time blow-up is observed in the last
two cases (cf. Figs. 5 and 6). The total energy is numerically conserved very well in our computation when there is no blow-
up (cf. Figs. 3 and 4) and before blow-up happens (cf. Figs. 5 and 6). Of course, it is not conserved numerically near or after
blow-up happens because the mesh size and time step are fixed which cannot resolve the solution. In addition, our new
numerical method can compute the dynamics of dipolar BEC accurately and efficiently.

6. Conclusions

Efficient and accurate numerical methods were proposed for computing ground states and dynamics of dipolar Bose-Ein-
stein condensates based on the three-dimensional Gross-Pitaevskii equation (GPE) with a nonlocal dipolar interaction po-
tential. By decoupling the dipolar interaction potential into a short-range and a long-range part, the GPE for a dipolar BEC
is re-formulated to a Gross-Pitaevskii—Poisson type system. Based on this new mathematical formulation, we proved rigor-
ously the existence and uniqueness as well as nonexistence of the ground states, and discussed the dynamical properties of
dipolar BEC in different parameter regimes. In addition, the backward Euler sine pseudospectral method and time-splitting
sine pseudospectral method were proposed for computing the ground states and dynamics of a dipolar BEC, respectively. Our
new numerical methods avoided taking the Fourier transform of the nonlocal dipolar interaction potential which is highly
singular and causes some numerical difficulties in practical computation. Comparison between our new numerical methods
and existing numerical methods in the literatures showed that our numerical methods perform better. Applications of our
new numerical methods for computing the ground states and dynamics of dipolar BECs were reported. In the future, we will
use our new numerical methods to simulate the ground states and dynamics of dipolar BEC with experimental relevant set-
ups and extend our methods for rotating dipolar BECs.
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Appendix A. Proof of the equality (2.2)

Let
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For any n € R? satisfies |n| = 1, in order to prove (2.2) holds in the distribution sense, it is equivalent to prove the following:
1 .
B0 00dx = ~£(0) =3 [ F0) o Yk 900 € G (). (A2)
R3 R3 nr
For any fixed ¢>0, let B, = {x € R* | [x| < ¢} and B = {x € R® | |x| > ¢&}. It is straightforward to check that
1 3
¢(X) = —30mn <m> 0#=xeR. (A3)
Using integration by parts and noticing (A.3), we get

/B $(0f (x)dx = 3 cf( )8.1.1(47I ) dx =3 a., (41 ) On(f(X) dx+3 | f(x) ¥ P (L) ds

Jos, 47r

=-3 BE4 Onn(f(X) dx+1;’+1;, (A4)

where
. . n-x
=3 fx ) 8,,<4m> ds, I:=-3 " a2 On(f(x))dS. (A.5)

OB

From (A.5), changing of variables, we get

. x)? 3 x)*
I =-3 (Zn’r‘f fx)ds = - /0 . %f(m e’ds
3

2 3 / 2
=—— n-x)°f(0)dS — — n -Xx)°[f(ex) — f(0)]dS. A6
4 [, @ 0T~ [ nx7 ) - f0) (A6)
Choosing 0 # n; € R® and 0 # n, € R® such that {n;,n,,n} forms an orthornormal basis of R?, by symmetry, we obtain

_3 ' 2 _i )2 )2 2 _l g 2 _l g B
—E/(?BI(H-X) d5—4n/03 {(n X)* + (ng - X)* + (my X)]d5‘4n/331 x1*dS = 4 aB]dS_L (A7)

[ mxtgen ff(O))dSI -
where 0 < 0 < 1. Plugging (A.7) and (A.8) into (A.6), we have
I -f0), &—0". (A9)

Similarly, for ¢ — 0%, we get

/a NUBES Vfwex)]dS\ < eIV ll~a, / 45 < 4T Vf i (A8)

1
51 < 319l | g 45 = 309 Iy =0, (A10)
3
[ 0010 <10 [ < 52 1D, — 0. (A11)

Combining (A.9), (A.10) and (A.11), taking ¢ — 0" in (A.4), we obtain

[ osoodx = —f0) =3 [ o omifyax, w0 € G R) (A12)

Thus (A.2) follows from (A.12) and the definition of the derivative in the distribution sense, i.e.

_ 00 3
[0 0 (g )= [ g omlFO0x, 0 € G ), (A13)
and the equality (2.2) is proven. O
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